Compare commits

...

34 Commits

Author SHA1 Message Date
Christoph Hagen
da22f8a37c New state machine, local UDP route 2024-04-22 12:58:18 +02:00
Christoph Hagen
3afe8b16a9 Cleanup 2024-04-20 21:00:09 +02:00
Christoph Hagen
1504ce6b0c Use local UDP messages instead of web server 2024-04-20 17:47:44 +02:00
Christoph Hagen
4a88d1a380 Run servo movement on different core 2024-04-20 09:57:15 +02:00
Christoph Hagen
6256b6ef33 Improve crypto primitives 2024-02-10 11:32:16 +01:00
Christoph Hagen
bd5a8d52cc Public inheritance for esp sources 2024-02-10 11:31:10 +01:00
Christoph Hagen
be274132d6 Extract configurations to separate files 2024-02-10 11:30:52 +01:00
Christoph Hagen
2a6db822ff Fix crypto primitives 2024-02-09 20:50:17 +01:00
Christoph Hagen
aa6cc17154 Add definitions for keys and signature 2023-12-14 09:42:54 +01:00
Christoph Hagen
9f8d9a9f51 Implement interfaces for ESP32 2023-12-13 13:21:29 +01:00
Christoph Hagen
0fc3efc0ec Add first interfaces for new system 2023-12-13 13:20:57 +01:00
Christoph Hagen
ac40656c1c Improve result names 2023-12-11 00:05:18 +01:00
Christoph Hagen
00d877c13a Fix null pointer reference 2023-12-11 00:04:59 +01:00
Christoph Hagen
b9e5fa1f89 Fix message type size 2023-12-11 00:04:08 +01:00
Christoph Hagen
1fe03a6906 Renew challenge on expiry 2023-12-08 00:24:15 +01:00
Christoph Hagen
0a11d9ff27 Don't send auth token twice 2023-12-05 22:55:45 +01:00
Christoph Hagen
6f8838c32b Fix socket bugs, timeout for connection 2023-12-05 22:54:47 +01:00
Christoph Hagen
4c23565b9c Finish socket operations 2023-12-05 21:31:11 +01:00
Christoph Hagen
9b49c3565d Switch to ethernet, challenge-response 2023-12-05 20:46:41 +01:00
Christoph Hagen
69a8f32179 Update dependency 2023-11-04 11:14:55 +01:00
Christoph Hagen
e99474c3cf Reset wifi and socket once per day 2023-11-04 11:14:40 +01:00
Christoph Hagen
684df16eb1 Check websocket connection 2023-11-03 14:33:22 +01:00
Christoph Hagen
5fc450ee63 Fix response size 2023-08-09 17:13:03 +02:00
Christoph Hagen
5ce8ec864d Fix event ids 2023-08-09 16:26:16 +02:00
Christoph Hagen
e84e388521 Improve configuration, refactoring 2023-08-09 15:02:24 +02:00
Christoph Hagen
b99245085e Create servo configuration 2023-08-09 13:38:12 +02:00
Christoph Hagen
d13bf67443 Create time class 2023-08-09 13:25:19 +02:00
Christoph Hagen
67169240f9 Create storage class 2023-08-09 13:13:38 +02:00
Christoph Hagen
a4cab0931f Introduce controller, refactoring 2023-08-09 12:55:11 +02:00
Christoph Hagen
e631ea0a20 Typo 2023-08-07 15:51:59 +02:00
Christoph Hagen
360f3a1478 Add device id to support multiple remotes 2023-08-07 15:17:04 +02:00
Christoph Hagen
8b196981ef Replace base64 with hex 2023-04-11 17:53:47 +02:00
Christoph Hagen
03e8b90b1f Add local server option 2023-04-11 14:33:58 +02:00
Christoph Hagen
15f07464ca Make example config explicit 2022-07-15 15:03:32 +02:00
26 changed files with 1470 additions and 539 deletions

1
.gitignore vendored
View File

@ -1,3 +1,4 @@
.pio
.vscode
.DS_Store
include/config.h

View File

@ -0,0 +1,33 @@
#pragma once
#include <stdint.h>
struct EthernetConfiguration {
// The MAC address of the ethernet connection
uint8_t macAddress[6];
// The master-in slave-out pin of the SPI connection for the Ethernet module
int8_t spiPinMiso;
// The master-out slave-in pin of the SPI connection for the Ethernet module
int8_t spiPinMosi;
// The slave clock pin of the SPI connection for the Ethernet module
int8_t spiPinSclk;
// The slave-select pin of the SPI connection for the Ethernet module
int8_t spiPinSS;
unsigned long dhcpLeaseTimeoutMs;
unsigned long dhcpLeaseResponseTimeoutMs;
// The static IP address to assign if DHCP fails
uint8_t manualIp[4];
// The IP address of the DNS server, if DHCP fails
uint8_t manualDnsAddress[4];
// The port for the incoming UDP connection
uint16_t udpPort;
};

View File

@ -0,0 +1,12 @@
#pragma once
#include <stdint.h>
struct KeyConfiguration {
const uint8_t* remoteKey;
const uint8_t* localKey;
uint32_t challengeExpiryMs;
};

198
include/controller.h Normal file
View File

@ -0,0 +1,198 @@
#pragma once
#include "server.h"
#include "servo.h"
#include "message.h"
#include "configurations/EthernetConfiguration.h"
#include "configurations/KeyConfiguration.h"
enum class SesameDeviceStatus {
/**
* @brief The initial state of the device after boot
*/
initial,
/**
* @brief The device has configured the individual parts,
* but has no the ethernet hardware detected.
*/
configuredButNoEthernetHardware,
/**
* @brief The device has ethernet hardware, but no ethernet link
*/
ethernetHardwareButNoLink,
/**
* @brief The device has an ethernet link, but no IP address.
*/
ethernetLinkButNoIP,
/**
* @brief The device has an IP address, but no socket connection
*/
ipAddressButNoSocketConnection,
};
class SesameController: public ServerConnectionCallbacks {
public:
SesameController(ServoConfiguration servoConfig, ServerConfiguration serverConfig, EthernetConfiguration ethernetConfig, KeyConfiguration keyConfig);
void loop(uint32_t millis);
private:
SesameDeviceStatus status = SesameDeviceStatus::initial;
uint32_t currentTime = 0;
ServerConnection server;
ServoController servo;
// UDP
// An EthernetUDP instance to send and receive packets over UDP
EthernetUDP udp;
EthernetHardwareStatus ethernetStatus;
EthernetConfiguration ethernetConfig;
bool ethernetIsConfigured = false;
KeyConfiguration keyConfig;
bool isReconnecting = false;
// Buffer to get local message
SignedMessage receivedLocalMessage;
uint32_t currentClientChallenge;
uint32_t currentChallengeExpiry = 0;
uint32_t currentServerChallenge;
SignedMessage outgoingMessage;
// MARK: Ethernet
void initializeSpiBusForEthernetModule();
/**
* @brief Checks to ensure that Ethernet hardware is available
*
* @return true The hardware is available
* @return false The hardware is missing
*/
bool hasAvailableEthernetHardware();
/**
* @brief Check that an active ethernet link is available
*
* @return true Link is available
* @return false Link is absent
*/
bool hasEthernetLink();
void configureEthernet();
void startUDP();
void stopUDP();
bool hasCurrentChallenge() {
return currentChallengeExpiry > currentTime;
}
void clearCurrentChallenge() {
currentClientChallenge = 0;
currentServerChallenge = 0;
currentChallengeExpiry = 0;
}
// MARK: Local client callbacks
void checkLocalMessage();
// MARK: Socket Callbacks
/**
* @brief Callback to send an error back to the server via the web socket.
*
* This function is called when the socket get's an error.
*
* @param event The error to report back
*/
void sendServerError(MessageResult event);
void handleServerMessage(uint8_t* payload, size_t length);
// MARK: Message processing
/**
* @brief Process a received message (local or socket).
*
* @param message The message to process.
*
* Note: Prepares the response in the outgoing message buffer.
*/
void processMessage(SignedMessage* message, bool shouldPerformUnlock);
/**
* @brief Checks that the message is valid and prepares a challenge.
*
* This function is also called when a challenge response arrives too late.
*
* @param message The message to respond to
*
* Note: Prepares the response in the outgoing message buffer.
*/
void checkAndPrepareChallenge(Message* message);
/**
* @brief Prepare a server challenge for a local or socket message.
*
* @param message The message to respond to
*
* Note: Prepares the response in the outgoing message buffer.
*/
void prepareChallenge(Message* message);
/**
* @brief Complete an unlock request for a local or socket message.
*
* @param message The message to respond to
*
* Note: Prepares the response in the outgoing message buffer.
*/
void completeUnlockRequest(Message* message, bool shouldPerformUnlock);
// MARK: Responses
/**
* @brief Prepare the outgoing message buffer for both socket and local responses.
*
* @param event The resulting state to transmit
* @param message An optional message to echo
*/
void prepareResponseBuffer(MessageResult event, Message* message = NULL);
/**
* @brief Read a message from the UDP port
*
*/
bool readLocalMessage();
/**
* @brief Send the prepared outgoing message to a locally connected client
*
* @param request The original request of the client
*/
void sendPreparedLocalResponse();
/**
* @brief Send the prepared outgoing message to the server
*/
void sendPreparedResponseToServer();
// MARK: Helper
bool convertHexMessageToBinary(const char* str);
};

View File

@ -3,6 +3,15 @@
#include "message.h"
#include <stddef.h>
void enableCrypto();
/**
* @brief Create a random server challenge.
*
* @return uint32_t
*/
uint32_t randomChallenge();
/**
* @brief Create a message authentication code (MAC) for some data.
*
@ -10,11 +19,10 @@
* @param dataLength The number of bytes to authenticate
* @param mac The output to store the MAC (must be at least 32 bytes)
* @param key The secret key used for authentication
* @param keyLength The length of the secret key
* @return true The MAC was successfully written
* @return false The MAC could not be created
*/
bool authenticateData(const uint8_t* data, size_t dataLength, uint8_t* mac, const uint8_t* key, size_t keyLength);
bool authenticateData(const uint8_t* data, size_t dataLength, uint8_t* mac, const uint8_t* key);
/**
* @brief Calculate a MAC for message content.
@ -22,22 +30,20 @@ bool authenticateData(const uint8_t* data, size_t dataLength, uint8_t* mac, cons
* @param message The message for which to calculate the MAC.
* @param mac The output where the computed MAC is stored
* @param key The secret key used for authentication
* @param keyLength The length of the secret key
* @return true The MAC was successfully computed
* @return false The MAC could not be created
*/
bool authenticateMessage(Message* message, uint8_t* mac, const uint8_t* key, size_t keyLength);
bool authenticateMessage(Message* message, uint8_t* mac, const uint8_t* key);
/**
* @brief Create a message authentication code (MAC) for a message.
*
* @param message The message to authenticate
* @param key The secret key used for authentication
* @param keyLength The length of the secret key
* @return true The MAC was successfully added to the message
* @return false The MAC could not be created
*/
bool authenticateMessage(AuthenticatedMessage* message, const uint8_t* key, size_t keyLength);
bool authenticateMessage(SignedMessage* message, const uint8_t* key);
/**
* @brief Check if a received unlock message is authentic
@ -48,8 +54,7 @@ bool authenticateMessage(AuthenticatedMessage* message, const uint8_t* key, size
*
* @param message The message to authenticate
* @param key The secret key used for authentication
* @param keyLength The length of the key in bytes
* @return true The message is authentic
* @return false The message is invalid, or the MAC could not be calculated
*/
bool isAuthenticMessage(AuthenticatedMessage* message, const uint8_t* key, size_t keyLength);
bool isAuthenticMessage(SignedMessage* message, const uint8_t* key);

View File

@ -12,6 +12,9 @@ constexpr uint32_t serialBaudRate = 115200;
/* Keys */
// The number of remote devices
constexpr int remoteDeviceCount = 1;
// The size of the symmetric keys used for signing and verifying messages
constexpr size_t keySize = 32;
@ -40,9 +43,19 @@ constexpr const char* wifiSSID = "MyWiFi";
// The WiFi password to connect to the above network
constexpr const char* wifiPassword = "00000000";
// The name of the device on the network
constexpr const char* networkName = "Sesame-Device";
// The interval to reconnect to WiFi if the connection is broken
constexpr uint32_t wifiReconnectInterval = 10000;
// The interval to reconnect to WiFi if the connection is broken
constexpr uint32_t wifiPeriodicReconnectInterval = 86400;
/* Local server */
// The port for the local server to directly receive messages over WiFi
constexpr uint16_t localPort = 80;
/* Server */

View File

@ -1,114 +0,0 @@
#pragma once
#include <stdint.h>
/**
* @brief The size of the message counter in bytes (uint32_t)
*/
#define MESSAGE_COUNTER_SIZE sizeof(uint32_t)
/**
* @brief Configure an NTP server to get the current time
*
* @param offsetToGMT The timezone offset in seconds
* @param offsetDaylightSavings The daylight savings offset in seconds
* @param serverUrl The url of the NTP server
*/
void configureNTP(int32_t offsetToGMT, int32_t offsetDaylightSavings, const char* serverUrl);
/**
* @brief Print the current time to the serial output
*
* The time must be initialized by calling `configureNTP()` before use.
*/
void printLocalTime();
/**
* Gets the current epoch time
*/
uint32_t getEpochTime();
/**
* @brief The allowed time discrepancy (in seconds)
*
* Specifies the allowed discrepancy between the time of a received message
* and the device time (in seconds).
*
* A stricter (lower) value better prevents against replay attacks,
* but may lead to issues when dealing with slow networks and other
* routing delays.
*
* @param offset The offset in both directions (seconds)
*/
void setMessageTimeAllowedOffset(uint32_t offset);
/**
* @brief Check wether the time of a message is within the allowed bounds regarding freshness.
*
* The timestamp is used to ensure 'freshness' of the messages,
* i.e. that they are not unreasonably delayed or captured and
* later replayed by an attacker.
*
* @param messageTime The timestamp of the message (seconds since epoch)
* @return true The time is within the acceptable offset of the local time
* @return false The message time is invalid
*/
bool isMessageTimeAcceptable(uint32_t messageTime);
/**
* @brief Initialize the use of the message counter API
*
* The message counter is stored in EEPROM, which must be initialized before use.
*
* @note The ESP32 does not have a true EEPROM,
* which is emulated using a section of the flash memory.
*/
void prepareMessageCounterUsage();
/**
* @brief Get the expected count for the next message.
*
* The counter is stored in EEPROM to persist across restarts
*
* @return The next counter to use by the remote
*/
uint32_t getNextMessageCounter();
/**
* @brief Print info about the current message counter to the serial output
*
*/
void printMessageCounter();
/**
* @brief Check if a received counter is valid
*
* The counter is valid if it is larger than the previous counter
* (larger or equal to the next expected counter).
*
* @param counter The counter to check
* @return true The counter is valid
* @return false The counter belongs to an old message
*/
bool isMessageCounterValid(uint32_t counter);
/**
* @brief Mark a counter of a message as used.
*
* The counter value is stored in EEPROM to persist across restarts.
*
* All messages with counters lower than the given one will become invalid.
*
* @param counter The counter used in the last message.
*/
void didUseMessageCounter(uint32_t counter);
/**
* @brief Reset the message counter.
*
* @warning The counter should never be reset in production environments,
* and only together with a new secret key. Otherwise old messages may be
* used for replay attacks.
*
*/
void resetMessageCounter();

View File

@ -0,0 +1,62 @@
#pragma once
#include "relay/interface/CryptoSource.h"
#include "ESP32NoiseSource.h"
class ESP32CryptoSource: public CryptoSource {
public:
ESP32CryptoSource(const char* rngInitTag);
bool isAvailable() override {
return true;
}
/**
* @brief Create a new random private key
*
* @param key The output buffer where the key will be stored
* @return true The key was created
* @return false The key could not be created
*/
bool createPrivateKey(PrivateKey* key) override;
/**
* @brief Create a the public key corresponding to a private key
*
* @param privateKey The private key to use
* @param publicKey The output buffer where the public key will be stored
* @return true The key was created
* @return false The key could not be created
*/
bool createPublicKey(const PrivateKey* privateKey, PublicKey* publicKey) override;
/**
* @brief Sign a message
*
* @param message The message payload to include in the message
* @param length The length of the payload
* @param signature The output buffer where the signature is written
* @return true The signature was created
* @return false The signature creation failed
*/
bool sign(const uint8_t *message, uint16_t length, Signature* signature, const PrivateKey* privateKey, const PublicKey* publicKey) override;
/**
* @brief Verify a message
*
* @param signature The message signature
* @param publicKey The public key with which the message was signed
* @param message The pointer to the message data
* @param length The length of the message
* @return true The signature is valid
* @return false The signature is invalid
*/
bool
verify(const Signature* signature, const PublicKey* publicKey, const void *message, uint16_t length) override;
private:
ESP32NoiseSource noise{};
};

View File

@ -0,0 +1,64 @@
#pragma once
#include <NoiseSource.h>
/// @brief The size of the internal buffer when generating entropy
constexpr size_t randomNumberBatchSize = 32;
/**
* @brief A noise source for crypto operations specifically for the ESP32.
*
*/
class ESP32NoiseSource: public NoiseSource {
public:
/**
* \brief Constructs a new random noise source.
*/
ESP32NoiseSource();
/**
* \brief Destroys this random noise source.
*/
~ESP32NoiseSource() {}
/**
* @brief Determine if the noise source is still calibrating itself.
*
* Noise sources that require calibration start doing so at system startup
* and then switch over to random data generation once calibration is complete.
* Since no random data is being generated during calibration, the output
* from `RNGClass::rand()` and `RNG.rand()` may be predictable.
* Use `RNGClass::available()` or `RNG.available()` to determine
* when sufficient entropy is available to generate good random values.
*
* It is possible that the noise source never exits calibration. This can
* happen if the input voltage is insufficient to trigger noise or if the
* noise source is not connected. Noise sources may also periodically
* recalibrate themselves.
*
* @return Returns true if calibration is in progress; false if the noise
* source is generating valid random data.
*
*/
bool calibrating() const override;
/**
* @brief Stirs entropy from this noise source into the global random
* number pool.
*
* This function should call `output()` to add the entropy from this noise
* source to the global random number pool.
*
* The noise source should batch up the entropy data, providing between
* 16 and 48 bytes of data each time. If the noise source does not have
* sufficient entropy data at the moment, it should return without stiring
* the current data in.
*/
void stir() override;
private:
/// @brief Temporary buffer to hold random bytes before handing them to the crypto module
uint8_t data[randomNumberBatchSize];
};

View File

@ -0,0 +1,17 @@
#include "relay/interface/StorageSource.h"
class ESP32StorageSource: public StorageSource {
bool writeByteAtIndex(uint8_t byte, uint16_t index) override;
bool canProvideStorageWithSize(uint16_t size) override;
bool commitData();
uint8_t readByteAtIndex(uint16_t index) override;
uint16_t readBytes(uint16_t startIndex, uint16_t count, uint8_t* output) override;
uint16_t writeBytes(uint8_t* bytes, uint16_t count, uint16_t startIndex) override;
};

View File

@ -1,6 +1,7 @@
#pragma once
#include "stdint.h"
#include <stdint.h>
#include <stddef.h>
/**
* @brief The size of a message authentication code
@ -13,51 +14,96 @@
#pragma pack(push, 1)
enum class MessageType: uint8_t {
/// @brief The initial message from remote to device to request a challenge.
initial = 0,
/// @brief The second message in an unlock with the challenge from the device to the remote
challenge = 1,
/// @brief The third message with the signed challenge from the remote to the device
request = 2,
/// @brief The final message with the unlock result from the device to the remote
response = 3,
};
enum class MessageResult: uint8_t {
/// @brief The message was accepted.
MessageAccepted = 0,
/// @brief The web socket received text while waiting for binary data.
TextReceivedOverSocket = 1,
/// @brief An unexpected socket event occured while performing the exchange.
UnexpectedSocketEvent = 2,
/// @brief The received message size is invalid.
InvalidMessageSizeFromRemote = 3,
/// @brief The message signature was incorrect.
InvalidSignatureFromRemote = 4,
/// @brief The server challenge of the message did not match previous messages
InvalidServerChallengeFromRemote = 5,
/// @brief The client challenge of the message did not match previous messages
InvalidClientChallengeFromRemote = 6,
/// @brief An unexpected or unsupported message type was received
InvalidMessageTypeFromRemote = 7,
/// @brief A message is already being processed
TooManyRequests = 8,
/// @brief The received message result was invalid
InvalidMessageResultFromRemote = 9,
/// @brief An invalid Url parameter was set sending a message to the device over a local connection
InvalidUrlParameter = 10,
};
/**
* @brief The content of an unlock message.
*
* The content is necessary to ensure freshness of the message
* by requiring a recent time and a monotonously increasing counter.
* This prevents messages from being delayed or being blocked and
* replayed later.
* @brief A generic message to exchange during challenge-response authentication.
*/
typedef struct {
/**
* The timestamp of message creation
*
* The timestamp is encoded as the epoch time, i.e. seconds since 1970 (GMT).
*
* The timestamp is used to ensure 'freshness' of the messages,
* i.e. that they are not unreasonably delayed or captured and
* later replayed by an attacker.
*/
uint32_t time;
/// @brief The type of message being sent.
MessageType messageType;
/**
* The counter of unlock messages
* @brief The random nonce created by the remote
*
* This counter must always increase with each message from the remote
* in order for the messages to be deemed valid. Transfering the counters
* back and forth also gives information about lost messages and potential
* attacks. Both the remote and the device keep a record of at least the
* last used counter.
* This nonce is a random number created by the remote, different for each unlock request.
* It is set for all message types.
*/
uint32_t id;
uint32_t clientChallenge;
/**
* @brief A random number to sign by the remote
*
* This nonce is set by the server after receiving an initial message.
* It is set for the message types `challenge`, `request`, and `response`.
*/
uint32_t serverChallenge;
/**
* @brief The response status for the previous message.
*
* It is set only for messages from the server, e.g. the `challenge` and `response` message types.
* Must be set to `MessageAccepted` for other messages.
*/
MessageResult result;
} Message;
/**
* @brief An authenticated message by the mobile device to command unlocking.
* @brief The signed version of a message.
*
* The message is protected by a message authentication code (MAC) based on
* a symmetric key shared by the device and the remote. This code ensures
* that the contents of the request were not altered. The message further
* contains a timestamp to ensure that the message is recent, and not replayed
* by an attacker. An additional counter is also included for this purpose,
* which must continously increase for a message to be valid. This increases
* security a bit, since the timestamp validation must be tolerant to some
* inaccuracy due to mismatching clocks.
*/
typedef struct {
@ -69,19 +115,29 @@ typedef struct {
*/
uint8_t mac[SHA256_MAC_SIZE];
/**
* @brief The message content.
*
* The content is necessary to ensure freshness of the message
* by requiring a recent time and a monotonously increasing counter.
* This prevents messages from being delayed or being blocked and
* replayed later.
*/
/// @brief The message
Message message;
} AuthenticatedMessage;
} SignedMessage;
constexpr size_t messageCounterSize = sizeof(uint32_t);
#pragma pack(pop)
#define MESSAGE_CONTENT_SIZE sizeof(Message)
constexpr int MESSAGE_CONTENT_SIZE = sizeof(Message);
constexpr int SIGNED_MESSAGE_SIZE = sizeof(SignedMessage);
/**
* @brief A callback for messages received over the socket
*
* The first parameter is a pointer to the byte buffer.
* The second parameter indicates the number of received bytes.
*/
typedef void (*MessageCallback)(uint8_t* payload, size_t length);
/**
* @brief A callback for socket errors
*/
typedef void (*ErrorCallback)(MessageResult event);
#define AUTHENTICATED_MESSAGE_SIZE sizeof(AuthenticatedMessage)

View File

@ -0,0 +1,59 @@
#pragma once
#include <stdint.h>
#pragma pack(push, 1)
/**
* @brief A private key for asymmetric cryptography
*/
struct PrivateKey {
/// @brief The size of a private key
static constexpr int size = 32;
uint8_t bytes[size];
bool isUnset() {
for (uint8_t i = 0; i < size; i += 1) {
if (bytes[i] != 0) {
return false;
}
}
return true;
}
};
/**
* @brief A public key for asymmetric cryptography
*/
struct PublicKey {
/// @brief The size of a public key
static constexpr int size = 32;
uint8_t bytes[size];
bool isUnset() {
for (uint8_t i = 0; i < size; i += 1) {
if (bytes[i] != 0) {
return false;
}
}
return true;
}
};
/**
* @brief A signature of some data using a private key
*/
struct Signature {
/// @brief The size of a message signature
static constexpr int size = 64;
uint8_t bytes[size];
};
#pragma pack(pop)

View File

@ -0,0 +1,68 @@
#pragma once
#include <stdint.h>
#include "relay/CryptoPrimitives.h"
/**
* @brief An abstract definition of an instance capable of crypto operations
*
*/
class CryptoSource {
public:
/**
* @brief Indicate that the crypto functions can be used.
*
* @return true The crypto functions are available
* @return false Some error prevents the use of the crypto functions.
*/
virtual
bool isAvailable() = 0;
/**
* @brief Create a new random private key
*
* @param key The output buffer where the key will be stored
* @return true The key was created
* @return false The key could not be created
*/
virtual
bool createPrivateKey(PrivateKey* key) = 0;
/**
* @brief Create a the public key corresponding to a private key
*
* @param privateKey The private key to use
* @param publicKey The output buffer where the public key will be stored
* @return true The key was created
* @return false The key could not be created
*/
virtual
bool createPublicKey(const PrivateKey* privateKey, PublicKey* publicKey) = 0;
/**
* @brief Sign a message
*
* @param message The message payload to include in the message
* @param length The length of the payload
* @param signature The output buffer where the signature is written
* @return true The signature was created
* @return false The signature creation failed
*/
virtual
bool sign(const uint8_t *message, uint16_t length, Signature* signature, const PrivateKey* privateKey, const PublicKey* publicKey) = 0;
/**
* @brief Verify a message
*
* @param signature The message signature
* @param publicKey The public key with which the message was signed
* @param message The pointer to the message data
* @param length The length of the message
* @return true The signature is valid
* @return false The signature is invalid
*/
virtual
bool verify(const Signature* signature, const PublicKey* publicKey, const void *message, uint16_t length) = 0;
};

View File

@ -0,0 +1,98 @@
#pragma once
#include <stdint.h>
/**
* @brief An abstract interface for persistent storage
*
* @note It is assumed that read operations are cached and therefore quick.
*/
class StorageSource {
public:
/**
* @brief Write a byte to disk
*
* @note The data is only persisted if the function `commitData()` is called afterwards.
*
* @param byte The byte to write
* @param index The index where to write the byte
* @return true
* @return false
*/
virtual
bool writeByteAtIndex(uint8_t byte, uint16_t index) = 0;
/**
* @brief Ensure that enough storage is available for all data
*
* @param size
* @return true The space was initialized an has sufficient size
* @return false
*/
virtual
bool canProvideStorageWithSize(uint16_t size) = 0;
/**
* @brief Write the data to persistent storage after a block of bytes was changed.
*
* @return true The data was persisted
* @return false The data could not be saved
*/
virtual
bool commitData() = 0;
/**
* @brief Read a single byte from persistent storage
*
* @param index The index of the byte in the data
* @return uint8_t The byte at the given index
*/
virtual
uint8_t readByteAtIndex(uint16_t index) = 0;
/**
* @brief Read a number of bytes from storage
*
* @param startIndex The index of the start byte
* @param count The number of bytes to read
* @param output The location to write the bytes
* @return uint8_t The number of bytes read
*/
virtual
uint16_t readBytes(uint16_t startIndex, uint16_t count, uint8_t* output) {
uint16_t endIndex = startIndex + count;
if (endIndex < startIndex) {
return 0; // Overflow
}
for (uint16_t i = 0; i < endIndex; i += 1) {
output[i] = readByteAtIndex(startIndex + i);
}
return count;
}
/**
* @brief Write a number of bytes to storage
*
* @note The data is only persisted if the function `commitData()` is called afterwards.
*
* @param bytes The memory holding the bytes
* @param count The number of bytes to write
* @param startIndex The index where the bytes should be written
* @return uint16_t The number of bytes written to storage
*/
virtual
uint16_t writeBytes(uint8_t* bytes, uint16_t count, uint16_t startIndex) {
uint16_t endIndex = startIndex + count;
if (endIndex < startIndex) {
return 0; // Overflow
}
for (uint16_t i = 0; i < endIndex; i += 1) {
if (!writeByteAtIndex(bytes[i], startIndex + i)) {
return i; // Failed to write byte
}
}
return count;
}
};

View File

@ -2,68 +2,103 @@
#include "message.h"
#include "crypto.h"
#include <WiFiMulti.h>
#include <WiFiClientSecure.h>
#include <WebSocketsClient.h>
/**
* An event signaled from the device
*/
enum class SesameEvent {
TextReceived = 1,
UnexpectedSocketEvent = 2,
InvalidMessageData = 3,
MessageAuthenticationFailed = 4,
MessageTimeMismatch = 5,
MessageCounterInvalid = 6,
MessageAccepted = 7,
struct ServerConfiguration {
/**
* @brief The url of the remote server to connect to
*/
const char* url;
/**
* @brief The server port
*/
int port;
/**
* @brief The path on the server
*/
const char* path;
/**
* @brief The authentication key for the server
*/
const char* key;
uint32_t reconnectTime;
uint32_t socketHeartbeatIntervalMs;
uint32_t socketHeartbeatTimeoutMs;
uint8_t socketHeartbeatFailureReconnectCount;
};
/**
* @brief A callback for messages received over the socket
*
* The first parameter is the received message.
* The second parameter is the response to the remote.
* The return value is the type of event to respond with.
*/
typedef SesameEvent (*MessageCallback)(AuthenticatedMessage*, AuthenticatedMessage*);
class ServerConnectionCallbacks {
public:
virtual void sendServerError(MessageResult event) = 0;
virtual void handleServerMessage(uint8_t* payload, size_t length) = 0;
};
class ServerConnection {
public:
ServerConnection(const char* url, int port, const char* path);
ServerConnection(ServerConfiguration configuration);
void connect(const char* key, uint32_t reconnectTime = 5000);
/**
* @brief Set the configuration and the callback handler
*
* @param callback The handler to handle messages and errors
*/
void setCallbacks(ServerConnectionCallbacks* callbacks);
void connectSSL(const char* key, uint32_t reconnectTime = 5000);
void shouldConnect(bool connect);
void loop();
/**
* @brief Call this function regularly to handle socket operations.
*
* Connecting and disconnecting is done automatically.
*
*/
void loop(uint32_t millis);
void onMessage(MessageCallback callback);
// Indicator that the socket is connected.
bool socketIsConnected = false;
/**
* @brief Send a response message over the socket
*
* @param buffer The data buffer
* @param length The number of bytes to send
*/
void sendResponse(uint8_t* buffer, uint16_t length);
private:
const char* url;
uint32_t currentTime = 0;
bool shouldBeConnected = false;
int port;
bool socketIsConnected() {
return webSocket.isConnected();
}
const char* path;
void connect();
const char* key = NULL;
bool isConnecting = false;
bool isDisconnecting = false;
uint32_t connectionTimeout = 0;
uint32_t nextReconnectAttemptMs = 0;
MessageCallback messageCallback = NULL;
void didChangeConnectionState(bool isConnected);
ServerConfiguration configuration;
ServerConnectionCallbacks* controller = NULL;
// WebSocket to connect to the control server
WebSocketsClient webSocket;
void reconnectAfter(uint32_t reconnectTime);
void registerEventCallback();
/**
* Callback for WebSocket events.
*
@ -73,35 +108,4 @@ private:
* @param length The number of bytes received
*/
void webSocketEventHandler(WStype_t type, uint8_t * payload, size_t length);
/**
* Process received binary data.
*
* Checks whether the received data is a valid and unused key,
* and then signals that the motor should move.
* Sends the event id to the server as a response to the request.
*
* If the key is valid, then `shouldStartOpening` is set to true.
*
* @param payload The pointer to the received data.
* @param length The number of bytes received.
*/
void processReceivedBytes(uint8_t* payload, size_t length);
/**
* Send a response event to the server and include the next key index.
*
* Sends the event type as three byte.
* @param event The event type
*/
void sendFailureResponse(SesameEvent event);
/**
* Send a response event to the server and include the next key index.
*
* Sends the event type as three byte.
* @param event The event type
*/
void sendResponse(SesameEvent event, AuthenticatedMessage* message);
};

View File

@ -3,6 +3,40 @@
#include <stdint.h>
#include <ESP32Servo.h> // To control the servo
struct ServoConfiguration {
/**
* @brief The timer to use for the servo control
* number 0-3 indicating which timer to allocate in this library
*/
int pwmTimer;
/**
* @brief The servo frequency (depending on the model used)
*/
int pwmFrequency;
/**
* @brief The pin where the servo PWM line is connected
*/
int pin;
/**
* @brief The duration (in ms) for which the button should remain pressed
*/
uint32_t openDuration;
/**
* @brief The servo value (in µs) that specifies the 'pressed' state
*/
int pressedValue;
/**
* @brief The servo value (in µs) that specifies the 'released' state
*/
int releasedValue;
};
/**
* @brief A controller for the button control servo
*
@ -17,54 +51,35 @@ class ServoController {
public:
/**
* @brief Construct a new Servo Controller object
* @brief Construct a new servo controller
*
* @param timer The timer to use for the servo control
* @param frequency The servo frequency (depending on the model used)
* @param pin The pin where the servo PWM line is connected
* @param The configuration for the servo
*/
ServoController(int timer, int frequency, int pin);
/**
* @brief Configure the button values
*
* @param openDuration The duration (in ms) for which the button should remain pressed
* @param pressedValue The servo value (in µs) that specifies the 'pressed' state
* @param releasedValue The servo value (in µs) that specifies the 'released' state
*/
void configure(uint32_t openDuration, int pressedValue, int releasedValue);
ServoController(ServoConfiguration configuration);
/**
* @brief Update the servo state periodically
*
* This function should be periodically called to update the servo state,
* This function will be periodically called to update the servo state,
* specifically to release the button after the opening time has elapsed.
*
* There is no required interval to call this function, but the accuracy of
* the opening interval is dependent on the calling frequency.
*/
void loop();
void loop(uint32_t millis);
/**
* Push the door opener button down by moving the servo arm.
*/
void pressButton();
/**
* Release the door opener button by moving the servo arm.
*/
void releaseButton();
private:
// Indicator that the door button is pushed
bool buttonIsPressed = false;
int timer;
int frequency;
int pin;
// Indicate that the button should be pressed
bool shouldPressButton = false;
uint32_t openDuration = 0;
@ -81,4 +96,12 @@ private:
// PWM Module needed for the servo
ESP32PWM pwm;
// The task on core 1 that resets the servo
TaskHandle_t servoResetTask;
/**
* Release the door opener button by moving the servo arm.
*/
void releaseButton();
};

View File

@ -13,6 +13,9 @@ platform = espressif32
board = az-delivery-devkit-v4
framework = arduino
lib_deps =
links2004/WebSockets@^2.3.7
madhephaestus/ESP32Servo@^0.11.0
madhephaestus/ESP32Servo@^1.1.0
arduino-libraries/Ethernet@^2.0.2
https://github.com/christophhagen/arduinoWebSockets#master
rweather/Crypto@^0.4.0
monitor_speed = 115200
build_flags= -D WEBSOCKETS_NETWORK_TYPE=NETWORK_W5100

333
src/controller.cpp Normal file
View File

@ -0,0 +1,333 @@
#include "controller.h"
#include "crypto.h"
#include "config.h"
#include <SPI.h>
#include <Ethernet.h>
SesameController::SesameController(ServoConfiguration servoConfig, ServerConfiguration serverConfig, EthernetConfiguration ethernetConfig, KeyConfiguration keyConfig)
: ethernetConfig(ethernetConfig), keyConfig(keyConfig), servo(servoConfig), server(serverConfig) {
}
void SesameController::initializeSpiBusForEthernetModule() {
SPI.begin(ethernetConfig.spiPinSclk, ethernetConfig.spiPinMiso, ethernetConfig.spiPinMosi, ethernetConfig.spiPinSS); //SCLK, MISO, MOSI, SS
pinMode(ethernetConfig.spiPinSS, OUTPUT);
Ethernet.init(ethernetConfig.spiPinSS);
}
void SesameController::loop(uint32_t millis) {
currentTime = millis;
switch (status) {
case SesameDeviceStatus::initial:
// In initial state, first configure SPI and
enableCrypto(); // Ensure source of random numbers without WiFi and Bluetooth
initializeSpiBusForEthernetModule();
// Direct messages and errors over the websocket to the controller
server.setCallbacks(this);
configureEthernet();
status = SesameDeviceStatus::configuredButNoEthernetHardware;
Serial.println("[INFO] State: initial -> noHardware");
// Directly check for ethernet hardware
// break;
case SesameDeviceStatus::configuredButNoEthernetHardware:
if (!hasAvailableEthernetHardware()) {
// No ethernet hardware found, wait
// TODO: Try rebooting after some time as a potential fix?
break;
}
status = SesameDeviceStatus::ethernetHardwareButNoLink;
Serial.println("[INFO] State: noHardware -> noLink");
// Directly check for Ethernet link
// break;
case SesameDeviceStatus::ethernetHardwareButNoLink:
if (!hasEthernetLink()) {
if (!hasAvailableEthernetHardware()) {
status = SesameDeviceStatus::configuredButNoEthernetHardware;
Serial.println("[INFO] State: noLink -> noHardware");
break;
}
// Wait for ethernet link
// TODO: Try rebooting after some time as a potential fix?
break;
}
status = SesameDeviceStatus::ethernetLinkButNoIP;
Serial.println("[INFO] State: noLink -> noIP");
// Directly check for socket connection
// break;
case SesameDeviceStatus::ethernetLinkButNoIP:
if (!hasEthernetLink()) {
if (hasAvailableEthernetHardware()) {
status = SesameDeviceStatus::ethernetHardwareButNoLink;
Serial.println("[INFO] State: noIP -> noLink");
} else {
status = SesameDeviceStatus::configuredButNoEthernetHardware;
Serial.println("[INFO] State: noIP -> noHardware");
}
break;
}
startUDP();
status = SesameDeviceStatus::ipAddressButNoSocketConnection;
Serial.println("[INFO] State: noIP -> noSocket");
// Directly check for socket connection
// break;
case SesameDeviceStatus::ipAddressButNoSocketConnection:
if (!hasEthernetLink()) {
server.shouldConnect(false);
stopUDP();
if (!hasAvailableEthernetHardware()) {
status = SesameDeviceStatus::configuredButNoEthernetHardware;
Serial.println("[INFO] State: noSocket -> noHardware");
} else {
status = SesameDeviceStatus::ethernetHardwareButNoLink;
Serial.println("[INFO] State: noSocket -> noLink");
}
break;
}
server.shouldConnect(true);
server.loop(millis);
checkLocalMessage();
break;
}
}
bool SesameController::hasAvailableEthernetHardware() {
EthernetHardwareStatus ethernetStatus = Ethernet.hardwareStatus();
static bool didNotify = false;
if (ethernetStatus != EthernetW5500) {
if (!didNotify) {
Serial.print("[ERROR] No Ethernet hardware found: ");
Serial.println(ethernetStatus);
didNotify = true;
}
return false;
}
return true;
}
bool SesameController::hasEthernetLink() {
return Ethernet.linkStatus() == EthernetLinkStatus::LinkON;
}
void SesameController::configureEthernet() {
if (Ethernet.begin(ethernetConfig.macAddress, ethernetConfig.dhcpLeaseTimeoutMs, ethernetConfig.dhcpLeaseResponseTimeoutMs) == 1) {
Serial.print("[INFO] DHCP assigned IP ");
Serial.println(Ethernet.localIP());
return;
}
Ethernet.begin(ethernetConfig.macAddress, ethernetConfig.manualIp, ethernetConfig.manualDnsAddress);
Serial.print("[WARNING] DHCP failed, using self-assigned IP ");
Serial.println(Ethernet.localIP());
}
void SesameController::startUDP() {
udp.begin(ethernetConfig.udpPort);
}
void SesameController::stopUDP() {
udp.stop();
}
// MARK: Local
void SesameController::checkLocalMessage() {
if (readLocalMessage()) {
sendPreparedLocalResponse();
}
}
bool SesameController::readLocalMessage() {
// if there's data available, read a packet
int packetSize = udp.parsePacket();
if (packetSize == 0) {
return false;
}
if (packetSize != SIGNED_MESSAGE_SIZE) {
Serial.print("[WARN] Received UDP packet of invalid size ");
Serial.println(packetSize);
prepareResponseBuffer(MessageResult::InvalidMessageSizeFromRemote);
return true;
}
int bytesRead = udp.read((uint8_t*) &receivedLocalMessage, SIGNED_MESSAGE_SIZE);
if (bytesRead != SIGNED_MESSAGE_SIZE) {
Serial.println("[WARN] Failed to read full local message");
prepareResponseBuffer(MessageResult::InvalidMessageSizeFromRemote);
return true;
}
Serial.println("[INFO] Received local message");
processMessage(&receivedLocalMessage, true);
return true;
}
void SesameController::sendPreparedLocalResponse() {
// send a reply to the IP address and port that sent us the packet we received
udp.beginPacket(udp.remoteIP(), udp.remotePort());
udp.write((uint8_t*) &outgoingMessage, SIGNED_MESSAGE_SIZE);
udp.endPacket();
Serial.println("[INFO] Sent local response");
}
// MARK: Server
void SesameController::sendServerError(MessageResult result) {
prepareResponseBuffer(result); // No message to echo
sendPreparedResponseToServer();
}
void SesameController::handleServerMessage(uint8_t* payload, size_t length) {
if (length != SIGNED_MESSAGE_SIZE) {
// No message saved to discard, don't accidentally delete for other operation
sendServerError(MessageResult::InvalidMessageSizeFromRemote);
return;
}
processMessage((SignedMessage*) payload, true);
sendPreparedResponseToServer();
}
void SesameController::sendPreparedResponseToServer() {
server.sendResponse((uint8_t*) &outgoingMessage, SIGNED_MESSAGE_SIZE);
Serial.printf("[INFO] Server response %u,%u\n", outgoingMessage.message.messageType, outgoingMessage.message.result);
}
// MARK: Message handling
void SesameController::processMessage(SignedMessage* message, bool shouldPerformUnlock) {
// Result must be empty
if (message->message.result != MessageResult::MessageAccepted) {
prepareResponseBuffer(MessageResult::InvalidMessageResultFromRemote);
return;
}
if (!isAuthenticMessage(message, keyConfig.remoteKey)) {
prepareResponseBuffer(MessageResult::InvalidSignatureFromRemote);
return;
}
switch (message->message.messageType) {
case MessageType::initial:
checkAndPrepareChallenge(&message->message);
return;
case MessageType::request:
completeUnlockRequest(&message->message, shouldPerformUnlock);
return;
default:
prepareResponseBuffer(MessageResult::InvalidMessageTypeFromRemote);
return;
}
}
void SesameController::checkAndPrepareChallenge(Message* message) {
// Server challenge must be empty
if (message->serverChallenge != 0) {
prepareResponseBuffer(MessageResult::InvalidClientChallengeFromRemote);
return;
}
prepareChallenge(message);
}
void SesameController::prepareChallenge(Message* message) {
if (hasCurrentChallenge()) {
Serial.println("[INFO] Overwriting old challenge");
}
// Set challenge and respond
currentClientChallenge = message->clientChallenge;
currentServerChallenge = randomChallenge();
message->serverChallenge = currentServerChallenge;
currentChallengeExpiry = currentTime + keyConfig.challengeExpiryMs;
prepareResponseBuffer(MessageResult::MessageAccepted, message);
}
void SesameController::completeUnlockRequest(Message* message, bool shouldPerformUnlock) {
// Client and server challenge must match
if (message->clientChallenge != currentClientChallenge) {
prepareResponseBuffer(MessageResult::InvalidClientChallengeFromRemote, message);
return;
}
if (message->serverChallenge != currentServerChallenge) {
prepareResponseBuffer(MessageResult::InvalidServerChallengeFromRemote, message);
return;
}
if (!hasCurrentChallenge()) {
// Directly send new challenge on expiry, since rest of message is valid
// This allows the remote to directly try again without requesting a new challenge.
// Security note: The client nonce is reused in this case, but an attacker would still
// not be able to create a valid unlock request due to the new server nonce.
prepareChallenge(message);
return;
}
clearCurrentChallenge();
// Move servo
if (shouldPerformUnlock) {
servo.pressButton();
}
prepareResponseBuffer(MessageResult::MessageAccepted, message);
Serial.println("[INFO] Accepted message");
}
void SesameController::prepareResponseBuffer(MessageResult result, Message* message) {
outgoingMessage.message.result = result;
if (message != NULL) {
outgoingMessage.message.clientChallenge = message->clientChallenge;
outgoingMessage.message.serverChallenge = message->serverChallenge;
// All outgoing messages are responses, except if an initial message is accepted
if (message->messageType == MessageType::initial && result == MessageResult::MessageAccepted) {
outgoingMessage.message.messageType = MessageType::challenge;
} else {
outgoingMessage.message.messageType = MessageType::response;
}
} else {
outgoingMessage.message.clientChallenge = 0;
outgoingMessage.message.serverChallenge = 0;
outgoingMessage.message.messageType = MessageType::response;
}
if (!authenticateMessage(&outgoingMessage, keyConfig.localKey)) {
Serial.println("[ERROR] Failed to sign message");
}
}
// MARK: Helper
/**
* @brief
*
* Based on https://stackoverflow.com/a/23898449/266720
*
* @param str
* @return true
* @return false
*/
bool SesameController::convertHexMessageToBinary(const char* str) {
uint8_t* buffer = (uint8_t*) &receivedLocalMessage;
// TODO: Fail if invalid hex values are used
uint8_t idx0, idx1;
// mapping of ASCII characters to hex values
const uint8_t hashmap[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, // 01234567
0x08, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 89:;<=>?
0x00, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, // @ABCDEFG
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // HIJKLMNO
};
size_t len = strlen(str);
if (len != SIGNED_MESSAGE_SIZE * 2) {
// Require exact message size
return false;
}
for (size_t pos = 0; pos < len; pos += 2) {
idx0 = ((uint8_t)str[pos+0] & 0x1F) ^ 0x10;
idx1 = ((uint8_t)str[pos+1] & 0x1F) ^ 0x10;
buffer[pos/2] = (uint8_t)(hashmap[idx0] << 4) | hashmap[idx1];
};
return true;
}

View File

@ -1,8 +1,19 @@
#include "crypto.h"
#include "config.h"
#include <string.h>
#include <mbedtls/md.h>
#include <esp_random.h>
#include <bootloader_random.h>
bool authenticateData(const uint8_t* data, size_t dataLength, uint8_t* mac, const uint8_t* key, size_t keyLength) {
void enableCrypto() {
bootloader_random_enable();
}
uint32_t randomChallenge() {
return esp_random();
}
bool authenticateData(const uint8_t* data, size_t dataLength, uint8_t* mac, const uint8_t* key) {
mbedtls_md_context_t ctx;
mbedtls_md_type_t md_type = MBEDTLS_MD_SHA256;
int result;
@ -12,7 +23,7 @@ bool authenticateData(const uint8_t* data, size_t dataLength, uint8_t* mac, cons
if (result) {
return false;
}
result = mbedtls_md_hmac_starts(&ctx, key, keyLength);
result = mbedtls_md_hmac_starts(&ctx, key, keySize);
if (result) {
return false;
}
@ -28,17 +39,17 @@ bool authenticateData(const uint8_t* data, size_t dataLength, uint8_t* mac, cons
return true;
}
bool authenticateMessage(Message* message, uint8_t* mac, const uint8_t* key, size_t keyLength) {
return authenticateData((const uint8_t*) message, MESSAGE_CONTENT_SIZE, mac, key, keyLength);
bool authenticateMessage(Message* message, uint8_t* mac, const uint8_t* key) {
return authenticateData((const uint8_t*) message, MESSAGE_CONTENT_SIZE, mac, key);
}
bool authenticateMessage(AuthenticatedMessage* message, const uint8_t* key, size_t keyLength) {
return authenticateMessage(&message->message, message->mac, key, keyLength);
bool authenticateMessage(SignedMessage* message, const uint8_t* key) {
return authenticateMessage(&message->message, message->mac, key);
}
bool isAuthenticMessage(AuthenticatedMessage* message, const uint8_t* key, size_t keyLength) {
bool isAuthenticMessage(SignedMessage* message, const uint8_t* key) {
uint8_t mac[SHA256_MAC_SIZE];
if (!authenticateMessage(&message->message, mac, key, keyLength)) {
if (!authenticateMessage(&message->message, mac, key)) {
return false;
}
return memcmp(mac, message->mac, SHA256_MAC_SIZE) == 0;

View File

@ -0,0 +1,29 @@
#include "interface/ESP32CryptoSource.h"
#include <Ed25519.h>
#include <RNG.h>
#include <NoiseSource.h>
ESP32CryptoSource::ESP32CryptoSource(const char* rngInitTag) {
RNG.begin(rngInitTag);
RNG.addNoiseSource(noise);
}
bool ESP32CryptoSource::createPrivateKey(PrivateKey* key) {
Ed25519::generatePrivateKey(key->bytes);
return true;
}
bool ESP32CryptoSource::createPublicKey(const PrivateKey* privateKey, PublicKey* publicKey) {
Ed25519::derivePublicKey(publicKey->bytes, privateKey->bytes);
return true;
}
bool ESP32CryptoSource::sign(const uint8_t *message, uint16_t length, Signature* signature, const PrivateKey* privateKey, const PublicKey* publicKey) {
Ed25519::sign(signature->bytes, privateKey->bytes, publicKey->bytes, message, length);
return true;
}
bool ESP32CryptoSource::verify(const Signature* signature, const PublicKey* publicKey, const void *message, uint16_t length) {
return Ed25519::verify(signature->bytes, publicKey->bytes, message, length);
}

View File

@ -0,0 +1,18 @@
#include "interface/ESP32NoiseSource.h"
#include <esp_random.h>
#include <bootloader_random.h>
ESP32NoiseSource::ESP32NoiseSource() {
// Ensure that there is randomness even if Bluetooth and WiFi are disabled
bootloader_random_enable();
}
bool ESP32NoiseSource::calibrating() const {
return false;
}
void ESP32NoiseSource::stir() {
esp_fill_random(data, randomNumberBatchSize);
output(data, randomNumberBatchSize, randomNumberBatchSize * 8);
}

View File

@ -0,0 +1,28 @@
#include "interface/ESP32StorageSource.h"
#include <EEPROM.h>
bool ESP32StorageSource::writeByteAtIndex(uint8_t byte, uint16_t index) {
// TODO: What does return value mean?
EEPROM.writeByte((int) index, byte);
return true;
}
bool ESP32StorageSource::canProvideStorageWithSize(uint16_t size) {
return EEPROM.begin(size);
}
bool ESP32StorageSource::commitData() {
return EEPROM.commit();
}
uint8_t ESP32StorageSource::readByteAtIndex(uint16_t index) {
return EEPROM.readByte((int) index);
}
uint16_t ESP32StorageSource::readBytes(uint16_t startIndex, uint16_t count, uint8_t* output) {
return EEPROM.readBytes(startIndex, output, count);
}
uint16_t ESP32StorageSource::writeBytes(uint8_t* bytes, uint16_t count, uint16_t startIndex) {
return EEPROM.writeBytes(startIndex, bytes, count);
}

View File

@ -1,102 +0,0 @@
#include "fresh.h"
#include <Arduino.h>
#include <time.h>
#include <EEPROM.h>
/**
* @brief The size of the message counter in bytes (uint32_t)
*/
#define MESSAGE_COUNTER_SIZE sizeof(uint32_t)
/**
* @brief The allowed discrepancy between the time of a received message
* and the device time (in seconds)
*
* A stricter (lower) value better prevents against replay attacks,
* but may lead to issues when dealing with slow networks and other
* routing delays.
*/
uint32_t allowedOffset = 60;
void setMessageTimeAllowedOffset(uint32_t offset) {
allowedOffset = offset;
}
void configureNTP(int32_t offsetToGMT, int32_t offsetDaylightSavings, const char* serverUrl) {
configTime(offsetToGMT, offsetDaylightSavings, serverUrl);
}
void printLocalTime() {
struct tm timeinfo;
if (getLocalTime(&timeinfo)) {
Serial.println(&timeinfo, "[INFO] Time is %A, %d. %B %Y %H:%M:%S");
} else {
Serial.println("[WARN] No local time available");
}
}
uint32_t getEpochTime() {
time_t now;
struct tm timeinfo;
if (!getLocalTime(&timeinfo)) {
Serial.println("[WARN] Failed to obtain local time");
return(0);
}
time(&now);
return now;
}
bool isMessageTimeAcceptable(uint32_t t) {
uint32_t localTime = getEpochTime();
if (localTime == 0) {
Serial.println("No epoch time available");
return false;
}
if (t > localTime + allowedOffset) {
return false;
}
if (t < localTime - allowedOffset) {
return false;
}
return true;
}
void prepareMessageCounterUsage() {
EEPROM.begin(MESSAGE_COUNTER_SIZE);
}
uint32_t getNextMessageCounter() {
uint32_t counter = (uint32_t) EEPROM.read(0) << 24;
counter += (uint32_t) EEPROM.read(1) << 16;
counter += (uint32_t) EEPROM.read(2) << 8;
counter += (uint32_t) EEPROM.read(3);
return counter;
}
void printMessageCounter() {
Serial.printf("[INFO] Next message number: %u\n", getNextMessageCounter());
}
bool isMessageCounterValid(uint32_t counter) {
return counter >= getNextMessageCounter();
}
void setMessageCounter(uint32_t counter) {
EEPROM.write(0, (counter >> 24) & 0xFF);
EEPROM.write(1, (counter >> 16) & 0xFF);
EEPROM.write(2, (counter >> 8) & 0xFF);
EEPROM.write(3, counter & 0xFF);
EEPROM.commit();
}
void didUseMessageCounter(uint32_t counter) {
// Store the next counter, so that resetting starts at 0
setMessageCounter(counter+1);
}
void resetMessageCounter() {
setMessageCounter(0);
Serial.println("[WARN] Message counter reset");
}

View File

@ -4,108 +4,73 @@
*
* The code for a simple door unlock mechanism where a servo pushes on an existing
* physical button.
*
* On compile error:
*
* In <Server.h>
*
* change:
* virtual void begin(uint16_t port=0) =0;
* to:
* virtual void begin() =0;
*/
#include <Arduino.h>
#include <WiFi.h>
#include "crypto.h"
#include "fresh.h"
#include "message.h"
#include "server.h"
#include "servo.h"
#include "controller.h"
#include "config.h"
/* Global variables */
ServoConfiguration servoConfig {
.pwmTimer = pwmTimer,
.pwmFrequency = servoFrequency,
.pin = servoPin,
.openDuration = lockOpeningDuration,
.pressedValue = servoPressedState,
.releasedValue = servoReleasedState,
};
ServerConnection server(serverUrl, serverPort, serverPath);
ServerConfiguration serverConfig {
.url = serverUrl,
.port = serverPort,
.path = serverPath,
.key = serverAccessKey,
.reconnectTime = 5000,
.socketHeartbeatIntervalMs = socketHeartbeatIntervalMs,
.socketHeartbeatTimeoutMs = socketHeartbeatTimeoutMs,
.socketHeartbeatFailureReconnectCount = socketHeartbeatFailureReconnectCount,
};
ServoController servo(pwmTimer, servoFrequency, servoPin);
EthernetConfiguration ethernetConfig {
.macAddress = ethernetMacAddress,
.spiPinMiso = spiPinMiso,
.spiPinMosi = spiPinMosi,
.spiPinSclk = spiPinSclk,
.spiPinSS = spiPinSS,
.dhcpLeaseTimeoutMs = dhcpLeaseTimeoutMs,
.dhcpLeaseResponseTimeoutMs = dhcpLeaseResponseTimeoutMs,
.manualIp = manualIpAddress,
.manualDnsAddress = manualDnsServerAddress,
.udpPort = localUdpPort,
};
/* Event callbacks */
KeyConfiguration keyConfig {
.remoteKey = remoteKey,
.localKey = localKey,
.challengeExpiryMs = challengeExpiryMs,
};
SesameEvent handleReceivedMessage(AuthenticatedMessage* payload, AuthenticatedMessage* response);
/* Logic */
SesameController controller(servoConfig, serverConfig, ethernetConfig, keyConfig);
void setup() {
Serial.begin(serialBaudRate);
Serial.setDebugOutput(true);
Serial.println("[INFO] Device started");
servo.configure(lockOpeningDuration, servoPressedState, servoReleasedState);
Serial.println("[INFO] Servo configured");
prepareMessageCounterUsage();
//resetMessageCounter();
printMessageCounter();
server.onMessage(handleReceivedMessage);
}
uint32_t nextWifiReconnect = 0;
bool isReconnecting = false;
void loop() {
uint32_t time = millis();
server.loop();
servo.loop();
// Reconnect to WiFi
if(time > nextWifiReconnect && WiFi.status() != WL_CONNECTED) {
Serial.println("[INFO] Reconnecting WiFi...");
WiFi.begin(wifiSSID, wifiPassword);
isReconnecting = true;
nextWifiReconnect = time + wifiReconnectInterval;
}
if (isReconnecting && WiFi.status() == WL_CONNECTED) {
isReconnecting = false;
Serial.println("[INFO] WiFi connected, opening socket");
server.connectSSL(serverAccessKey);
configureNTP(timeOffsetToGMT, timeOffsetDaylightSavings, ntpServerUrl);
printLocalTime();
}
}
SesameEvent processMessage(AuthenticatedMessage* message) {
if (!isMessageCounterValid(message->message.id)) {
return SesameEvent::MessageCounterInvalid;
}
if (!isMessageTimeAcceptable(message->message.time)) {
return SesameEvent::MessageTimeMismatch;
}
if (!isAuthenticMessage(message, remoteKey, keySize)) {
return SesameEvent::MessageAuthenticationFailed;
}
return SesameEvent::MessageAccepted;
}
/**
* Process received binary data.
*
* Checks whether the received data is a valid and unused key,
* and then signals that the motor should move.
*
* @param payload The pointer to the received data.
* @param length The number of bytes received.
* @return The event to signal to the server.
*/
SesameEvent handleReceivedMessage(AuthenticatedMessage* message, AuthenticatedMessage* response) {
SesameEvent event = processMessage(message);
// Only open when message is valid
if (event == SesameEvent::MessageAccepted) {
didUseMessageCounter(message->message.id);
// Move servo
servo.pressButton();
Serial.printf("[Info] Accepted message %d\n", message->message.id);
}
// Create response for all cases
response->message.time = getEpochTime();
response->message.id = getNextMessageCounter();
if (!authenticateMessage(response, localKey, keySize)) {
return SesameEvent::MessageAuthenticationFailed;
}
return event;
controller.loop(time);
}

View File

@ -1,105 +1,133 @@
#include "server.h"
constexpr int32_t pingInterval = 10000;
constexpr uint32_t pongTimeout = 5000;
uint8_t disconnectTimeoutCount = 3;
ServerConnection::ServerConnection(const char* url, int port, const char* path) :
url(url), port(port), path(path) {
ServerConnection::ServerConnection(ServerConfiguration configuration) : configuration(configuration) { }
void ServerConnection::setCallbacks(ServerConnectionCallbacks *callbacks) {
controller = callbacks;
}
void ServerConnection::connect(const char* key, uint32_t reconnectTime) {
webSocket.begin(url, port, path);
registerEventCallback();
reconnectAfter(reconnectTime);
}
void ServerConnection::connectSSL(const char* key, uint32_t reconnectTime) {
if (socketIsConnected) {
void ServerConnection::shouldConnect(bool connect) {
if (connect == shouldBeConnected) {
return;
}
this->key = key;
webSocket.beginSSL(url, port, path);
registerEventCallback();
reconnectAfter(reconnectTime);
if (controller == NULL) {
Serial.println("[ERROR] No callbacks set for server");
return;
}
shouldBeConnected = connect;
nextReconnectAttemptMs = currentTime;
}
void ServerConnection::loop() {
webSocket.loop();
}
void ServerConnection::connect() {
Serial.printf("[INFO] Connecting to %s:%d%s\n", configuration.url, configuration.port, configuration.path);
connectionTimeout = currentTime + configuration.socketHeartbeatIntervalMs;
webSocket.begin(configuration.url, configuration.port, configuration.path);
webSocket.setAuthorization(configuration.key);
void ServerConnection::onMessage(MessageCallback callback) {
messageCallback = callback;
}
void ServerConnection::reconnectAfter(uint32_t reconnectTime) {
webSocket.setReconnectInterval(reconnectTime);
}
void ServerConnection::registerEventCallback() {
std::function<void(WStype_t, uint8_t *, size_t)> f = [this](WStype_t type, uint8_t *payload, size_t length) {
this->webSocketEventHandler(type, payload, length);
};
webSocket.onEvent(f);
webSocket.setReconnectInterval(configuration.reconnectTime);
}
void ServerConnection::didChangeConnectionState(bool isConnected) {
static bool wasConnected = false;
if (isConnected) {
Serial.println("[INFO] Socket connected, enabling heartbeat");
isConnecting = false;
webSocket.enableHeartbeat(configuration.socketHeartbeatIntervalMs, configuration.socketHeartbeatTimeoutMs, configuration.socketHeartbeatFailureReconnectCount);
} else {
isDisconnecting = false;
if (!wasConnected && shouldBeConnected && nextReconnectAttemptMs < currentTime) {
nextReconnectAttemptMs = currentTime + configuration.socketHeartbeatIntervalMs;
Serial.println("[INFO] Socket disconnected, setting reconnect time");
} else if (wasConnected) {
Serial.println("[INFO] Socket disconnected");
}
}
wasConnected = isConnected;
}
void ServerConnection::loop(uint32_t millis) {
currentTime = millis;
webSocket.loop();
if (shouldBeConnected) {
if (isDisconnecting) {
return; // Wait for disconnect to finish, then it will be reconnected
}
if (isConnecting) {
if (millis > connectionTimeout) {
// Cancel connection attempt
Serial.println("[INFO] Canceling socket connection attempt");
isDisconnecting = true;
isConnecting = false;
webSocket.disconnect();
}
return; // Wait for connect to finish
}
if (webSocket.isConnected()) {
return; // Already connected
}
if (controller == NULL) {
return;
}
if (millis < nextReconnectAttemptMs) {
return; // Wait for next reconnect
}
isConnecting = true;
connect();
} else {
if (isDisconnecting) {
return; // Wait for disconnect
}
if (isConnecting) {
return; // Wait until connection is established, then it will be disconnected
}
if (!webSocket.isConnected()) {
return;
}
isDisconnecting = true;
Serial.println("[INFO] Disconnecting socket");
webSocket.disconnect();
}
}
void ServerConnection::webSocketEventHandler(WStype_t type, uint8_t * payload, size_t length) {
switch(type) {
case WStype_DISCONNECTED:
socketIsConnected = false;
Serial.println("[INFO] Socket disconnected.");
didChangeConnectionState(false);
break;
case WStype_CONNECTED:
socketIsConnected = true;
webSocket.sendTXT(key);
Serial.printf("[INFO] Socket connected to url: %s\n", payload);
webSocket.enableHeartbeat(pingInterval, pongTimeout, disconnectTimeoutCount);
didChangeConnectionState(true);
break;
case WStype_TEXT:
sendFailureResponse(SesameEvent::TextReceived);
controller->sendServerError(MessageResult::TextReceivedOverSocket);
break;
case WStype_BIN:
processReceivedBytes(payload, length);
controller->handleServerMessage(payload, length);
break;
case WStype_PONG:
break;
case WStype_PING:
break;
case WStype_ERROR:
case WStype_FRAGMENT_TEXT_START:
case WStype_FRAGMENT_BIN_START:
case WStype_FRAGMENT:
case WStype_FRAGMENT_FIN:
sendFailureResponse(SesameEvent::UnexpectedSocketEvent);
Serial.printf("[WARN] Unexpected socket event %d\n", type);
controller->sendServerError(MessageResult::UnexpectedSocketEvent);
break;
}
}
void ServerConnection::processReceivedBytes(uint8_t* payload, size_t length) {
if (length != AUTHENTICATED_MESSAGE_SIZE) {
sendFailureResponse(SesameEvent::InvalidMessageData);
return;
void ServerConnection::sendResponse(uint8_t* buffer, uint16_t length) {
if (socketIsConnected()) {
webSocket.sendBIN(buffer, length);
} else {
Serial.println("Failed to send response, socket not connected.");
}
AuthenticatedMessage* message = (AuthenticatedMessage*) payload;
if (messageCallback == NULL) {
sendFailureResponse(SesameEvent::MessageAuthenticationFailed);
return;
}
AuthenticatedMessage responseMessage;
SesameEvent event = messageCallback(message, &responseMessage);
sendResponse(event, &responseMessage);
}
void ServerConnection::sendFailureResponse(SesameEvent event) {
uint8_t response = static_cast<uint8_t>(event);
webSocket.sendBIN(&response, 1);
Serial.printf("[INFO] Socket failure %d\n", response);
}
void ServerConnection::sendResponse(SesameEvent event, AuthenticatedMessage* message) {
uint8_t response[AUTHENTICATED_MESSAGE_SIZE+1];
response[0] = static_cast<uint8_t>(event);
memcpy(response+1, (uint8_t*) message, AUTHENTICATED_MESSAGE_SIZE);
webSocket.sendBIN(response, AUTHENTICATED_MESSAGE_SIZE+1);
Serial.printf("[INFO] Socket response %d\n", response[0]);
}

View File

@ -2,25 +2,39 @@
#include <esp32-hal.h> // For `millis()`
ServoController::ServoController(int timer, int frequency, int pin)
: timer(timer), frequency(frequency), pin(pin) {
void performReset(void * pvParameters) {
ServoController* servo = (ServoController *) pvParameters;
for(;;){
servo->loop(millis());
delay(50);
}
}
void ServoController::configure(uint32_t openDuration, int pressedValue, int releasedValue) {
this->openDuration = openDuration;
this->pressedValue = pressedValue;
this->releasedValue = releasedValue;
ESP32PWM::allocateTimer(timer);
servo.setPeriodHertz(frequency);
servo.attach(pin);
ServoController::ServoController(ServoConfiguration configuration) {
// Create a task that runs on a different core,
// So that it's always executed
xTaskCreatePinnedToCore(
performReset, /* Task function. */
"Servo", /* name of task. */
1000, /* Stack size of task */
this, /* parameter of the task */
1, /* priority of the task */
&servoResetTask,
1); /* pin task to core 1 */
openDuration = configuration.openDuration;
pressedValue = configuration.pressedValue;
releasedValue = configuration.releasedValue;
ESP32PWM::allocateTimer(configuration.pwmTimer);
servo.setPeriodHertz(configuration.pwmFrequency);
servo.attach(configuration.pin);
releaseButton();
}
void ServoController::pressButton() {
servo.write(pressedValue);
buttonIsPressed = true;
openingEndTime = millis() + openDuration;
shouldPressButton = true;
}
void ServoController::releaseButton() {
@ -28,8 +42,13 @@ void ServoController::releaseButton() {
buttonIsPressed = false;
}
void ServoController::loop() {
if (buttonIsPressed && millis() > openingEndTime) {
void ServoController::loop(uint32_t millis) {
if (shouldPressButton) {
servo.write(pressedValue);
openingEndTime = millis + openDuration;
buttonIsPressed = true;
shouldPressButton = false;
} else if (buttonIsPressed && millis > openingEndTime) {
releaseButton();
}
}