Files
ChWebsiteApp/CHDataManagement/Workouts/Locations+Sampled.swift
2025-08-31 16:27:32 +02:00

169 lines
6.2 KiB
Swift

import CoreLocation
extension Array where Element == CLLocation {
var totalDistance: CLLocationDistance {
zip(self, dropFirst())
.map { $0.distance(from: $1) }
.reduce(0, +)
}
var duration: TimeInterval {
guard let start = first, let end = last else { return 0 }
return end.timestamp.timeIntervalSince(start.timestamp)
}
/**
Sample the locations using a given time interval.
*/
func samplePeriodically(at interval: TimeInterval) -> [CLLocation] {
guard interval > 0 else { return [] }
guard let start = first, let end = last else { return self }
let totalTime = end.timestamp.timeIntervalSince(start.timestamp)
let numberOfSamples = Int((totalTime / interval).rounded(.up))
return periodicSamples(interval: interval, numberOfSamples: numberOfSamples)
}
/**
Sample the locations at a fixed period determined by the number of desired sampels
*/
func samplePeriodically(numberOfSamples: Int) -> [CLLocation] {
guard numberOfSamples > 0 else { return [] }
guard let start = first, let end = last else { return self }
let totalTime = end.timestamp.timeIntervalSince(start.timestamp)
let timeInterval = totalTime / TimeInterval(count - 1)
return periodicSamples(interval: timeInterval, numberOfSamples: numberOfSamples)
}
private func periodicSamples(interval: TimeInterval, numberOfSamples: Int) -> [CLLocation] {
guard let start = first else { return [] }
var currentIndex = 0
var currentTime = start.timestamp
var samples = [start]
for _ in 1..<numberOfSamples {
currentTime = currentTime.addingTimeInterval(interval)
while true {
let nextIndex = currentIndex + 1
if nextIndex >= count { break }
let nextTime = self[nextIndex].timestamp
if nextTime > currentTime { break }
currentIndex += 1
}
if currentIndex + 1 == count {
samples.append(self[currentIndex])
} else {
let before = self[currentIndex]
let after = self[currentIndex + 1]
let interpolated = before.interpolate(currentTime, to: after)
samples.append(interpolated)
}
}
return samples
}
/// Computes path length by moving along center-to-center lines, intersecting uncertainty spheres
func minimumTraveledDistance3D() -> CLLocationDistance {
guard count > 1 else { return 0 }
// Remove the uncertainty radius of the first location
var current = self.first!
var totalDistance: CLLocationDistance = -current.uncertaintyRadius3D
for next in self[1...] {
let (movement, point) = current.minimumDistance(to: next)
current = point
totalDistance += movement
}
return totalDistance
}
/// Calculates the minimum possible ascended altitude (meters),
/// considering vertical accuracy as an uncertainty interval.
func minimumAscendedAltitude() -> CLLocationDistance {
guard let first = self.first else { return 0 }
// Start with the highest possible value of the first point
var currentAltitude = first.altitude + first.verticalAccuracy
var ascended: CLLocationDistance = 0
for next in self.dropFirst() {
let newMin = next.altitude - next.verticalAccuracy
let newMax = next.altitude + next.verticalAccuracy
if newMin > currentAltitude {
// Lower bound must be adjusted
ascended += newMin - currentAltitude
currentAltitude = newMin
} else if newMax < currentAltitude {
// Upper bound must be adjusted
currentAltitude = newMax
}
}
return ascended
}
/// Calculates the minimum possible ascended altitude (meters),
/// considering a given vertical accuracy threshold
func minimumAscendedAltitude(threshold: CLLocationDistance) -> CLLocationDistance {
guard let first = self.first else { return 0 }
// Start with the highest possible value of the first point
var currentAltitude = first.altitude + threshold
var ascended: CLLocationDistance = 0
for next in self.dropFirst() {
let newMin = next.altitude - threshold
let newMax = next.altitude + threshold
if newMin > currentAltitude {
// Lower bound must be adjusted
ascended += newMin - currentAltitude
currentAltitude = newMin
} else if newMax < currentAltitude {
// Upper bound must be adjusted
currentAltitude = newMax
}
}
return ascended
}
func interpolateAltitudes(
from startDate: Date,
to endDate: Date
) -> [CLLocation] {
// Ensure valid range
guard startDate < endDate else { return self }
// Find first and last locations in the window
guard
let startLocation = first(where: { $0.timestamp >= startDate }),
let endLocation = last(where: { $0.timestamp <= endDate })
else {
return self // No valid range found
}
let startAltitude = startLocation.altitude
let endAltitude = endLocation.altitude
let duration = endDate.timeIntervalSince(startDate)
return map { loc in
guard loc.timestamp >= startDate && loc.timestamp <= endDate else {
return loc // outside window, unchanged
}
let progress = (loc.timestamp.timeIntervalSince(startDate)) / duration
let newAltitude = startAltitude + progress * (endAltitude - startAltitude)
return CLLocation(
coordinate: loc.coordinate,
altitude: newAltitude,
horizontalAccuracy: loc.horizontalAccuracy,
verticalAccuracy: loc.verticalAccuracy,
course: loc.course,
speed: loc.speed,
timestamp: loc.timestamp
)
}
}
}