Begin statistics creation

This commit is contained in:
Christoph Hagen
2025-08-31 16:27:32 +02:00
parent f972a2c020
commit 96bd07bdb7
33 changed files with 1406 additions and 187 deletions

View File

@@ -0,0 +1,104 @@
import CoreLocation
extension CLLocation {
func duration(since other: CLLocation) -> TimeInterval {
duration(since: other.timestamp)
}
func duration(since other: Date) -> TimeInterval {
timestamp.timeIntervalSince(other)
}
func speed(from other: CLLocation) -> Double {
distance(from: other) / duration(since: other)
}
/// Combined uncertainty sphere radius (meters) from horizontal+vertical accuracy
var uncertaintyRadius3D: CLLocationDistance {
let h = max(0, horizontalAccuracy)
let v = max(0, verticalAccuracy)
return sqrt(h * h + v * v)
}
func verticalDistance(from other: CLLocation) -> CLLocationDistance {
abs(self.altitude - other.altitude)
}
func minimumDistance(to other: CLLocation) -> (distance: CLLocationDistance, point: CLLocation) {
let horizontalDistance = distance(from: other)
let horizontalMovement = Swift.max(0, horizontalDistance - Swift.max(0, other.horizontalAccuracy))
let latitude: CLLocationDegrees
let longitude: CLLocationDegrees
if horizontalDistance == 0 || horizontalMovement == 0 {
latitude = coordinate.latitude
longitude = coordinate.longitude
} else {
let horizontalRatio = horizontalMovement / horizontalDistance
latitude = coordinate.latitude.move(horizontalRatio, to: other.coordinate.latitude)
longitude = coordinate.longitude.move(horizontalRatio, to: other.coordinate.longitude)
}
let verticalDistance = verticalDistance(from: other)
let verticalMovement = Swift.max(0, verticalDistance - Swift.max(0, other.verticalAccuracy))
let altitude: CLLocationDistance
if verticalDistance == 0 || verticalMovement == 0 {
altitude = self.altitude
} else {
let verticalRatio = verticalMovement / verticalDistance
altitude = self.altitude.move(verticalRatio, to: other.altitude)
}
let movement = sqrt(horizontalMovement * horizontalMovement + verticalMovement * verticalMovement)
let point = CLLocation(
coordinate: .init(latitude: latitude, longitude: longitude),
altitude: altitude,
horizontalAccuracy: 0,
verticalAccuracy: 0,
timestamp: other.timestamp
)
return (movement, point)
}
func interpolate(_ time: Date, to other: CLLocation) -> CLLocation {
if self.timestamp > other.timestamp {
return other.interpolate(time, to: self)
}
let totalDuration = other.timestamp.timeIntervalSince(self.timestamp)
if totalDuration == 0 { return move(0.5, to: other) }
let ratio = time.timeIntervalSince(self.timestamp) / totalDuration
return move(ratio, to: other)
}
func move(_ ratio: Double, to other: CLLocation) -> CLLocation {
if ratio <= 0 { return self }
if ratio >= 1 { return other }
let time = timestamp.addingTimeInterval(other.timestamp.timeIntervalSince(timestamp) * ratio)
return CLLocation(
coordinate: .init(
latitude: coordinate.latitude.move(ratio, to: other.coordinate.latitude),
longitude: coordinate.longitude.move(ratio, to: other.coordinate.longitude)),
altitude: altitude.move(ratio, to: other.altitude),
horizontalAccuracy: move(from: horizontalAccuracy, to: other.horizontalAccuracy, by: ratio),
verticalAccuracy: move(from: verticalAccuracy, to: other.verticalAccuracy, by: ratio),
course: move(from: course, to: other.course, by: ratio),
courseAccuracy: move(from: courseAccuracy, to: other.courseAccuracy, by: ratio),
speed: move(from: speed, to: other.speed, by: ratio),
speedAccuracy: move(from: speedAccuracy, to: other.speedAccuracy, by: ratio),
timestamp: time)
}
private func move(from source: Double, to other: Double, by ratio: Double) -> Double {
if source == -1 {
return other
}
if other == -1 {
return source
}
return source.move(ratio, to: other)
}
}

View File

@@ -0,0 +1,15 @@
import Foundation
extension Date {
func inclusiveDays(to other: Date, calendar: Calendar = .current) -> Int {
let startDay = calendar.startOfDay(for: self)
let endDay = calendar.startOfDay(for: other)
guard let days = calendar.dateComponents([.day], from: startDay, to: endDay).day else {
return 0
}
return abs(days) + 1
}
}

View File

@@ -0,0 +1,115 @@
import Foundation
extension Double {
/**
Move to a different value by the given ratio of their distance.
*/
func move(_ ratio: Double, to other: Double) -> Double {
self + (other - self) * ratio
}
}
extension Collection where Element == Double {
func sum() -> Double {
reduce(0, +)
}
func average() -> Double {
sum() / Double(count)
}
}
extension Collection where Element == Double, Index == Int {
func floatingMeanFiltered(windowSize: Int) -> [Double] {
guard windowSize > 1 else {
return self.map { $0 }
}
guard count >= windowSize else {
return .init(repeating: average(), count: count)
}
let firstHalf = windowSize / 2
let secondHalf = windowSize - firstHalf
var minSpeed: Double = 0
var maxSpeed: Double = 0
let averageScale = 1.0 / Double(windowSize)
// First calculate the filtered speeds in the normal unit
var currentAverage = self[0..<windowSize].average()
var result: [Double] = .init(repeating: currentAverage, count: firstHalf + 1)
for index in firstHalf..<count-firstHalf-1 { // Index in self
let removed = self[index-firstHalf]
let added = self[index+secondHalf]
currentAverage += (added - removed) * averageScale
result.append(currentAverage)
if currentAverage < minSpeed { minSpeed = currentAverage }
else if currentAverage > maxSpeed { maxSpeed = currentAverage }
}
result.append(contentsOf: [Double](repeating: currentAverage, count: secondHalf))
return result
}
func fittingAxisLimits(desiredNumSteps: Int = 5, minLimit: Double? = nil, maxLimit: Double? = nil) -> RouteProfile {
let (dataMin, dataMax) = minMax(minLimit: minLimit, maxLimit: maxLimit)
let dataRange = dataMax - dataMin
let roughStep = dataRange / Double(desiredNumSteps)
let exponent = floor(log10(roughStep))
let base = pow(10.0, exponent)
let step: Double
if roughStep <= base {
step = base
} else if roughStep <= 2 * base {
step = 2 * base
} else if roughStep <= 5 * base {
step = 5 * base
} else {
step = 10 * base
}
let graphMin = floor(dataMin / step) * step
let graphMax = ceil(dataMax / step) * step
let numTicks = Int((graphMax - graphMin) / step)
return .init(min: graphMin, max: graphMax, ticks: numTicks)
}
func minMax(minLimit: Double? = nil, maxLimit: Double? = nil) -> (min: Double, max: Double) {
var dataMin = self.min() ?? 0
var dataMax = self.max() ?? 1
if let minLimit {
dataMin = Swift.max(dataMin, minLimit)
}
if let maxLimit {
dataMax = Swift.min(dataMax, maxLimit)
}
return (dataMin, dataMax)
}
func fittingTimeAxisLimits(minTicks: Int = 3, maxTicks: Int = 7, minLimit: Double? = nil, maxLimit: Double? = nil) -> RouteProfile {
let (dataMin, dataMax) = minMax(minLimit: minLimit, maxLimit: maxLimit)
let dataRange = dataMax - dataMin
let niceSteps: [Double] = [15, 30, 60, 120, 300, 600, 900, 1800, 3600] // in seconds
// Find the step size that gives a nice number of ticks
var chosenStep = niceSteps.last! // fallback to largest if none fit
for step in niceSteps {
let numTicks = dataRange / step
if Double(minTicks) <= numTicks && numTicks <= Double(maxTicks) {
chosenStep = step
break
}
}
let graphMin = floor(dataMin / chosenStep) * chosenStep
let graphMax = ceil(dataMax / chosenStep) * chosenStep
let numTicks = Int((graphMax-graphMin) / chosenStep)
return .init(min: graphMin, max: graphMax, ticks: numTicks)
}
}

View File

@@ -0,0 +1,13 @@
struct DataRanges {
let duration: RangeInterval
let time: RangeInterval
let distance: RangeInterval
}
extension DataRanges: Codable {
}

View File

@@ -0,0 +1,11 @@
struct RangeInterval {
let min: Double
let max: Double
}
extension RangeInterval: Codable {
}

View File

@@ -0,0 +1,26 @@
import Foundation
/**
All data needed to create statistic displays
*/
struct RouteData {
let series: RouteSeries
let ranges: DataRanges
let samples: [RouteSample]
}
extension RouteData: Codable {
func encoded(prettyPrinted: Bool = false) -> Data {
let encoder = JSONEncoder()
encoder.outputFormatting = .sortedKeys
if prettyPrinted {
encoder.outputFormatting.insert(.prettyPrinted)
}
return try! encoder.encode(self)
}
}

View File

@@ -0,0 +1,32 @@
struct RouteProfile: Codable {
let min: Double
let max: Double
let ticks: Int
let span: Double
let scale: Double
init(min: Double, max: Double, ticks: Int) {
self.min = min
self.max = max
self.ticks = ticks
self.span = max - min
self.scale = 1 / span
}
func scale(_ value: Double) -> Double {
if value < min {
return 0
}
if value > max {
return 1
}
return (value - min) / span
}
}

View File

@@ -0,0 +1,95 @@
struct RouteSample {
/// The x-coordinate in the map image (left to right) in the range [0,1]
var x: Double
/// The y-coordinate in the map image (top to bottom) in the range [0,1]
var y: Double
/// The timestamp of the sample in the range [0,1]
var time: Double
/// The distance of the sample in the range [0,1]
var distance: Double
/// The elevation of the sample in the range [0,1]
var elevation: Double
/// The speed of the sample in the range [0,1]
var speed: Double
/// The pace of the sample in the range [0,1]
var pace: Double
/// The heart rate of the sample in the range [0,1]
var hr: Double
/// The active energy rate of the sample in the range [0,1]
var energy: Double?
}
extension RouteSample: Codable {
func encode(to encoder: any Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)
try container.encode(x.rounded(decimals: 4), forKey: .x)
try container.encode(y.rounded(decimals: 4), forKey: .y)
try container.encode(time.rounded(decimals: 4), forKey: .time)
try container.encode(distance.rounded(decimals: 4), forKey: .distance)
try container.encode(elevation.rounded(decimals: 4), forKey: .elevation)
try container.encode(speed.rounded(decimals: 4), forKey: .speed)
try container.encode(pace.rounded(decimals: 4), forKey: .pace)
try container.encode(hr.rounded(decimals: 4), forKey: .hr)
try container.encodeIfPresent(energy?.rounded(decimals: 4), forKey: .energy)
}
}
extension RouteSample: Identifiable {
var id: Double { x }
}
extension RouteSample {
static var zero: RouteSample {
.init(x: 0, y: 0, time: 0, distance: 0, elevation: 0, speed: 0, pace: 0, hr: 0, energy: nil)
}
}
extension Collection where Element == RouteSample {
var averageSample: RouteSample {
guard var average = first else {
return .zero
}
var energySamples = average.energy == nil ? 0 : 1
for sample in dropFirst() {
average.x += sample.x
average.y += sample.y
average.time += sample.time
average.distance += sample.distance
average.elevation += sample.elevation
average.speed += sample.speed
average.pace += sample.pace
average.hr += sample.hr
if let energy = sample.energy {
average.energy = (average.energy ?? 0) + energy
energySamples += 1
}
}
let scale = 1 / Double(count)
average.x *= scale
average.y *= scale
average.time *= scale
average.distance *= scale
average.elevation *= scale
average.speed *= scale
average.pace *= scale
average.hr *= scale
if let energy = average.energy, energySamples > 0 {
average.energy = energy / Double(energySamples)
}
return average
}
}

View File

@@ -0,0 +1,18 @@
import Foundation
struct RouteSeries {
let elevation: RouteProfile
let speed: RouteProfile
let pace: RouteProfile
let hr: RouteProfile
let energy: RouteProfile?
}
extension RouteSeries: Codable {
}

View File

@@ -2,6 +2,17 @@ import CoreLocation
extension Array where Element == CLLocation {
var totalDistance: CLLocationDistance {
zip(self, dropFirst())
.map { $0.distance(from: $1) }
.reduce(0, +)
}
var duration: TimeInterval {
guard let start = first, let end = last else { return 0 }
return end.timestamp.timeIntervalSince(start.timestamp)
}
/**
Sample the locations using a given time interval.
*/
@@ -137,125 +148,21 @@ extension Array where Element == CLLocation {
let duration = endDate.timeIntervalSince(startDate)
return map { loc in
let t = loc.timestamp.timeIntervalSince1970
if loc.timestamp >= startDate && loc.timestamp <= endDate {
let progress = (loc.timestamp.timeIntervalSince(startDate)) / duration
let newAltitude = startAltitude + progress * (endAltitude - startAltitude)
return CLLocation(
coordinate: loc.coordinate,
altitude: newAltitude,
horizontalAccuracy: loc.horizontalAccuracy,
verticalAccuracy: loc.verticalAccuracy,
course: loc.course,
speed: loc.speed,
timestamp: loc.timestamp
)
} else {
guard loc.timestamp >= startDate && loc.timestamp <= endDate else {
return loc // outside window, unchanged
}
let progress = (loc.timestamp.timeIntervalSince(startDate)) / duration
let newAltitude = startAltitude + progress * (endAltitude - startAltitude)
return CLLocation(
coordinate: loc.coordinate,
altitude: newAltitude,
horizontalAccuracy: loc.horizontalAccuracy,
verticalAccuracy: loc.verticalAccuracy,
course: loc.course,
speed: loc.speed,
timestamp: loc.timestamp
)
}
}
}
extension CLLocation {
/// Combined uncertainty sphere radius (meters) from horizontal+vertical accuracy
var uncertaintyRadius3D: CLLocationDistance {
let h = max(0, horizontalAccuracy)
let v = max(0, verticalAccuracy)
return sqrt(h * h + v * v)
}
func verticalDistance(from other: CLLocation) -> CLLocationDistance {
abs(self.altitude - other.altitude)
}
func minimumDistance(to other: CLLocation) -> (distance: CLLocationDistance, point: CLLocation) {
let horizontalDistance = distance(from: other)
let horizontalMovement = Swift.max(0, horizontalDistance - Swift.max(0, other.horizontalAccuracy))
let latitude: CLLocationDegrees
let longitude: CLLocationDegrees
if horizontalDistance == 0 || horizontalMovement == 0 {
latitude = coordinate.latitude
longitude = coordinate.longitude
} else {
let horizontalRatio = horizontalMovement / horizontalDistance
latitude = coordinate.latitude.move(horizontalRatio, to: other.coordinate.latitude)
longitude = coordinate.longitude.move(horizontalRatio, to: other.coordinate.longitude)
}
let verticalDistance = verticalDistance(from: other)
let verticalMovement = Swift.max(0, verticalDistance - Swift.max(0, other.verticalAccuracy))
let altitude: CLLocationDistance
if verticalDistance == 0 || verticalMovement == 0 {
altitude = self.altitude
} else {
let verticalRatio = verticalMovement / verticalDistance
altitude = self.altitude.move(verticalRatio, to: other.altitude)
}
let movement = sqrt(horizontalMovement * horizontalMovement + verticalMovement * verticalMovement)
let point = CLLocation(
coordinate: .init(latitude: latitude, longitude: longitude),
altitude: altitude,
horizontalAccuracy: 0,
verticalAccuracy: 0,
timestamp: other.timestamp
)
return (movement, point)
}
func interpolate(_ time: Date, to other: CLLocation) -> CLLocation {
if self.timestamp > other.timestamp {
return other.interpolate(time, to: self)
}
let totalDuration = other.timestamp.timeIntervalSince(self.timestamp)
if totalDuration == 0 { return move(0.5, to: other) }
let ratio = time.timeIntervalSince(self.timestamp) / totalDuration
return move(ratio, to: other)
}
func move(_ ratio: Double, to other: CLLocation) -> CLLocation {
if ratio <= 0 { return self }
if ratio >= 1 { return other }
let time = timestamp.addingTimeInterval(other.timestamp.timeIntervalSince(timestamp) * ratio)
return CLLocation(
coordinate: .init(
latitude: coordinate.latitude.move(ratio, to: other.coordinate.latitude),
longitude: coordinate.longitude.move(ratio, to: other.coordinate.longitude)),
altitude: altitude.move(ratio, to: other.altitude),
horizontalAccuracy: move(from: horizontalAccuracy, to: other.horizontalAccuracy, by: ratio),
verticalAccuracy: move(from: verticalAccuracy, to: other.verticalAccuracy, by: ratio),
course: move(from: course, to: other.course, by: ratio),
courseAccuracy: move(from: courseAccuracy, to: other.courseAccuracy, by: ratio),
speed: move(from: speed, to: other.speed, by: ratio),
speedAccuracy: move(from: speedAccuracy, to: other.speedAccuracy, by: ratio),
timestamp: time)
}
private func move(from source: Double, to other: Double, by ratio: Double) -> Double {
if source == -1 {
return other
}
if other == -1 {
return source
}
return source.move(ratio, to: other)
}
}
extension Double {
/**
Move to a different value by the given ratio of their distance.
*/
func move(_ ratio: Double, to other: Double) -> Double {
self + (other - self) * ratio
}
}

View File

@@ -11,6 +11,51 @@ struct MapImageCreator {
scale: CGFloat = 2.0,
lineWidth: CGFloat = 5,
paddingFactor: Double = 1.2,
lineColor: NSColor = .systemBlue
) -> (image: NSImage, imagePoints: [CGPoint])? {
let semaphore = DispatchSemaphore(value: 0)
var result: (image: NSImage, imagePoints: [CGPoint])?
self.createMapSnapshot(
size: layoutSize,
scale: scale,
lineWidth: lineWidth,
paddingFactor: paddingFactor,
lineColor: lineColor
) { res in
result = res
semaphore.signal()
}
semaphore.wait()
return result
}
func createMapSnapshot(
size layoutSize: CGSize,
scale: CGFloat = 2.0,
lineWidth: CGFloat = 5,
paddingFactor: Double = 1.2,
lineColor: NSColor = .systemBlue
) async -> (image: NSImage, imagePoints: [CGPoint])? {
await withCheckedContinuation { c in
self.createMapSnapshot(
size: layoutSize,
scale: scale,
lineWidth: lineWidth,
paddingFactor: paddingFactor,
lineColor: lineColor
) { c.resume(returning: $0) }
}
}
func createMapSnapshot(
size layoutSize: CGSize,
scale: CGFloat = 2.0,
lineWidth: CGFloat = 5,
paddingFactor: Double = 1.2,
lineColor: NSColor = .systemBlue,
completion: @escaping ((image: NSImage, imagePoints: [CGPoint])?) -> Void
) {
guard !locations.isEmpty else {
@@ -61,7 +106,7 @@ struct MapImageCreator {
path.line(to: point)
}
NSColor.systemBlue.setStroke()
lineColor.setStroke()
path.lineWidth = lineWidth * scale
path.stroke()
}

View File

@@ -0,0 +1,200 @@
enum SamplingMode {
case cumulative // e.g., distance, energy
case instantaneous // e.g., heart rate, altitude
}
struct Point: Identifiable, Equatable, Hashable {
var x, y: Double
var id: Double { x }
/**
Interpolate the y value at an x coordinate toward another point.
*/
func interpolate(to other: Point, at location: Double) -> Double {
let totalX = other.x - x
if totalX == 0 {
return (y + other.y) / 2
}
let diffX = location - x
if diffX == 0 {
return y
}
let ratio = diffX / totalX
return y + (other.y - y) * ratio
}
static let zero = Point(x: 0, y: 0)
}
extension Array where Element == Point {
func resample(numberOfSamples: Int, minX: Double? = nil, maxX: Double? = nil, mode: SamplingMode) -> [Point] {
guard count >= 2, numberOfSamples > 0 else { return [] }
let firstX = minX ?? first!.x
let lastX = maxX ?? last!.x
let totalDuration = lastX - firstX
guard totalDuration > 0 else { return [] }
let interval = totalDuration / Double(numberOfSamples)
var result: [Point] = .init(repeating: .zero, count: numberOfSamples)
var currentIndex = 0
var current = self[0]
for i in 0..<numberOfSamples {
let startOfInterval = Double(i) * interval
let endOfInterval = startOfInterval + interval
var accumulated = 0.0
var accumulatedDuration = 0.0
while currentIndex < count - 1 {
let next = self[currentIndex + 1]
if next.x <= endOfInterval {
let dt = next.x - current.x
switch mode {
case .cumulative:
accumulated += next.y - current.y
case .instantaneous:
accumulated += (current.y + next.y) / 2 * dt
accumulatedDuration += dt
}
currentIndex += 1
current = next
} else {
// partial segment at the interval end
let dt = endOfInterval - current.x
let slope = (next.y - current.y) / (next.x - current.x)
let interpolatedY = current.y + slope * dt
switch mode {
case .cumulative:
accumulated += interpolatedY - current.y
case .instantaneous:
accumulated += (current.y + interpolatedY) / 2 * dt
accumulatedDuration += dt
}
current = Point(x: endOfInterval, y: interpolatedY)
break
}
}
result[i].x = (startOfInterval + endOfInterval) / 2 // midpoint
switch mode {
case .cumulative:
result[i].y = accumulated / interval // average rate over interval
case .instantaneous:
result[i].y = accumulatedDuration > 0 ? accumulated / accumulatedDuration : current.y
}
}
return result
}
func resample(
numberOfSamples: Int,
minX: Double? = nil,
maxX: Double? = nil,
mode: SamplingMode
) -> [Double] {
guard count >= 2, numberOfSamples > 0 else { return [] }
let minX = minX ?? first!.x
let maxX = maxX ?? last!.x
let totalDuration = maxX - minX
guard totalDuration > 0 else { return [] }
let interval = totalDuration / Double(numberOfSamples)
var result = [Double](repeating: 0.0, count: numberOfSamples)
var currentIndex = 0
var current = self[0]
for i in 0..<numberOfSamples {
let startOfInterval = minX + Double(i) * interval
let endOfInterval = startOfInterval + interval
var accumulated = 0.0
var accumulatedDuration = 0.0
while currentIndex < count - 1 {
let next = self[currentIndex + 1]
if next.x <= endOfInterval {
let dt = next.x - current.x
switch mode {
case .cumulative:
accumulated += next.y - current.y
case .instantaneous:
accumulated += (current.y + next.y) / 2 * dt
accumulatedDuration += dt
}
currentIndex += 1
current = next
} else {
let dt = endOfInterval - current.x
let slope = (next.y - current.y) / (next.x - current.x)
let interpolatedY = current.y + slope * dt
switch mode {
case .cumulative:
accumulated += interpolatedY - current.y
case .instantaneous:
accumulated += (current.y + interpolatedY) / 2 * dt
accumulatedDuration += dt
}
current = Point(x: endOfInterval, y: interpolatedY)
break
}
}
let value: Double
switch mode {
case .cumulative:
value = accumulated / interval
case .instantaneous:
value = accumulatedDuration > 0 ? accumulated / accumulatedDuration : current.y
}
result[i] = value
}
return result
}
}
extension Sequence {
/// Resamples any sequence of elements into evenly spaced intervals.
///
/// - Parameters:
/// - numberOfSamples: Number of output points
/// - xSelector: Closure to get the independent variable (e.g., time)
/// - ySelector: Closure to get the dependent variable (e.g., distance, heart rate)
/// - mode: .cumulative or .instantaneous
/// - Returns: Array of Points with evenly spaced `x` and averaged `y`
func resample(
numberOfSamples: Int,
x: (Element) -> Double,
y: (Element) -> Double,
mode: SamplingMode
) -> [Point] {
let points = self.map { Point(x: x($0), y: y($0)) }
return points.resample(numberOfSamples: numberOfSamples, mode: mode)
}
func resample(
numberOfSamples: Int,
minX: Double? = nil,
maxX: Double? = nil,
x: (Element) -> Double,
y: (Element) -> Double,
mode: SamplingMode
) -> [Double] {
let points = self.map { Point(x: x($0), y: y($0)) }
return points.resample(
numberOfSamples: numberOfSamples,
minX: minX,
maxX: maxX,
mode: mode)
}
}

View File

@@ -17,4 +17,38 @@ struct RouteOverview {
let start: Date?
let end: Date?
static func combine(_ overviews: [RouteOverview]) -> RouteOverview {
RouteOverview(
energy: overviews.reduce(0) { $0 + $1.energy },
distance: overviews.reduce(0) { $0 + $1.distance },
duration: overviews.reduce(0) { $0 + $1.duration },
ascendedElevation: overviews.reduce(0) { $0 + $1.ascendedElevation },
start: overviews.compactMap { $0.start }.min(),
end: overviews.compactMap { $0.end }.max())
}
var days: Int {
guard let start, let end else {
return 0
}
return start.inclusiveDays(to: end)
}
}
extension RouteOverview {
func update(labels: inout [ContentLabel], language: ContentLanguage) {
let locale = language.locale
let days = self.days
if days != 1 {
labels.insertOrReplace(icon: .calendar, value: language.text(days: days))
} else {
labels.insertOrReplace(icon: .statisticsTime, value: duration.duration(locale: locale))
}
labels.insertOrReplace(icon: .statisticsDistance, value: String(format: "%.1f km", locale: locale, distance / 1000))
labels.insertOrReplace(icon: .statisticsElevationUp, value: ascendedElevation.length(roundingToNearest: 50))
labels.insertOrReplace(icon: .statisticsEnergy, value: energy.energy(roundingToNearest: 50))
}
}

View File

@@ -9,6 +9,31 @@ private struct Entry<T: BinaryFloatingPoint>: Comparable {
}
extension Sequence {
func firstElement() -> Element? {
for element in self {
return element
}
return nil
}
func minMax<E>(by converting: (Element) -> E) -> (min: E, max: E)? where E: Comparable {
guard let first = firstElement() else {
return nil
}
var minimum = converting(first)
var maximum = minimum
for location in dropFirst() {
let value = converting(location)
if value < minimum {
minimum = value
} else if value > maximum {
maximum = value
}
}
return (minimum, maximum)
}
/// Applies a centered median filter to the sequence.
/// - Parameters:
/// - windowSize: The number of samples in the median filter window (should be odd for symmetric centering).